NASA CR-132469

EFFECTS OF NOISE UPON
HUMAN INFORMATION PROCESSING

by

H. Harvey Cohen, Donald W. Conrad,
John F. 0'Brien and Richard G. Pearson

y
b

Departments of Psychology and Industrial Engineé%g?%

Prepared under NASA Grant NGL-34-002-055

NORTH CAROLINA STATE UNIVERSITY
Raleigh, NC 27607

for

NATIONAL AERONAUTICS & SPACE ADMINISTRATION

‘(NESA-éE:;SE;69)' TFFECTS OF NOISE UPON , N74-~31576
EHUHEH INFORMATIOR PRGCESSING SN?Ethﬂ
.Carolina State Univ.) :

C Unclas
fWEBIQﬁ_“46740_“f

June 1974

T Reproduced by
NATIONAL TECHNICAL
INFORMATION  SERVICE

VS Depatment of Commerce
Springlield, YA. 22151

/



1. Report No. 2. Governiment Accession No. 3. Recipient's Catalog No.

NASA CR- _
4, Title and Subtitle ‘ 5. Report Date
June 1974
EFFECT: OF NOISE UPOR HUMAN INFORMATION PROCESSING 6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.

H. Harvey Cohen, Donald W. Copnrad, John P. O'Brien, and

Richard &. Pearson 10. Work Unit No.

9. Performing Organization Name and Address 504-09-11-01

. . 11. Contract or Grant No,
North Carclina State University

Raleigh, North Carcline 27507 NGL=34-002-055

13, Type of Report and Period Covered

12. Sponsoring Agency Name and Address Contractor Report

Wationnl Aeronautics and Spece Administration 14. Sponsoring Agency Code

Washington, D.C. 20545

15. Supplementary Notes

16. Abstract

Three studies of nolse eiffects upon nwan informellon processing are deseribed. Whethier or not
gffects of nolse upon perfovmance vere found was seen to be dependent upon specific characteristics
of noise stimulation and their intersction with task conditions. Thé difficulty of predicting
noise effects was thus enmhasized. Aroussal theory wos considered to have explanatory value in
interpretiug the ifindings of 2ll three studies. Performance under nolse was found to involve

a paychophysiological "cost" as measured by wascconstriction response, the degree of response
"cost" being relsted to scores on & nolse ammoyance sensitivity scale, i.e., "noise sensitive™

aubjects showed a sgreater autonomic response under noise gtimulation.

PRICES SUBJECT TO CHANGE

17. Key Words (Suggested by Author{s}} 18. Distribution Statement

Ncise Pollution
subjective Response to MHolse
Performance Effects of Nolge

; L Unclasgified - Unlimited
Human Information Processing

Arougal

Physlological Response .
19, Security Classif. {of this report} 20, Security Classif. {of this page) 21, No, of Pages 22. Price”
A Unclassified Unclagsified

7t
b For sale by the National Technical Information Service, Springfield, Virginia 22161



iii

CONTENTS

LIST OF TLLUSTRATIONS + + v v & « 4 « o o« o + s o s + o o« v
LIST OF TABLES + « v + & v v 4 o v b e v v e e e o h e s C vi
I. TINTRODUCTION « v « v+ o o o v o v e e e e e e e et a s 1
II. STUDY 1: NOISE ONLY DURING ATTENTION TO THE TASK . . . . . 3

Statement of the Problem . . ¢ « &4 « « & & & + o = o = 3

o~

Method « ¢« v v v v & 4 o v s « & & 8 a x4 & % x x4 a

Subjects « + + « 4 4 4 4 e e e e s e e e e 4 e v
Stimulus Materials . . & ¢ 4 ¢ 4 ¢ 4 e 4 e s 4 e s
Nolse Generation . <« . « ¢ o & ¢ o & o o o « & » &
Test ENVITONMENT « « o+ v s = = o ¢ o s o & 2 o o

Procedure .+ . « & s 2 o v v 4 e s e s v o a w e e s

(Yo = <R« S R L

Experimental Design . . . . . . . « &+ s + & « & « =

RESUILS ¢ v v v v o v e s o« o = « 4 & 3 & % 8 o+ 4 e s s 10

Discussion . . . e e e e E e e e e e e e e e e e 13
III. STUDY 2: NOISE AND TASK DIFFICULTY . . . + « « « « + « . . 16

Statement of the Problem . « o « v v o v v o v v o o o i6

Method . o+ ¢ « + ¢ v o b e s e s e e e e e 17

SUBFECES v v v e v e e e e e e e e e e e s e 17
Task ApPpParabus . « + « « o « « + & + + % « v v o« s | 18
Noise Generation . . . . & +« o + o ¢ ¢« 4 4w e s 20
Experimental Design . . « . « + &« o« « .0 o 0 0 0 21

Procedule@ + = v « o s o » & + v a4 8 4 4 e v o s e 22

RESULES « + o v o o o o o = o o« 3 % & = = s 4 o ¢ s 1 . 23

DIisCUSSION & v v o o o o o o 5 & 4 8 & .+ o+ 2 o 4 . . 31



I¥. STUDY 3: NOISE SENSITIVITY AND PHYSIOLOGICAL RESPONSE

V.

DIFFERENCES . . . + + + « « o &

Statement of the Problem .

Method . . « + « v ¢ ¢+ o . . “ e e e .« e
Subjects . . ¢ v 4 4 e s s v e .. oo e s
Task Apparatus . . . . N

Auditory Stimulus Apparatus . . . . .

Physiological Recording Equipment . . . . . .

Test Materials . . . . C e e e W e e e e s

Procedure . . + « « & &« s s o o« 2 s soe e s
Results . . . . . . e e e e e e . - . .

Performance Data . .

Questionnaire Response Data . . . . .

V as oconstriction Response . . .

Pulse Rate Data . .

Forearm Electromyogram
Discussion . . . + . . .+ .
SUMMARY AND CONCLUSIONS . . . .
LIST OF REFERENCES . . . . . .

ACKNOWLEDGMENTS . . . . « .« . .

. . - - LI} .

34

34
37

37
37
38
39
42
42

45

45
47
48
50
51

52

54

58

61



10,

LIST 0F ILLUSTRATIONS

Stimulus items arranged by category « o o o ¢« o+ e s 2 s
Sample stimulus signal o o+ & & v ¢ 4 4 0 e s s e s e
Four-choice serial task . + « 4 « o » « o o o o o o o « &
fffect of noise on task performlnce .+ « « + & o » o« o o
Effects of work pace on task performance . .« +« + « + « =

Interaction effects of noise and work pace on task
PerfOrmance « « + s o = » & x & « & » o+ v e o+ @ e . . s

Interaction effects of noise and time at work on task
PerfOrMALCE & o » o o + o & & s s o s o o o 4+ e o ¢

Interacticn effects of work pace and time at work on task
PErTOTMAICE o 4 o o o + « + & » 5 s+ & 5 o s & & o s o

Interaction effects of noise, work pace, and time at work
on task performMance . . .+ « & 4 s & s e s 8 e s e e s

Photoplethysmographic transducer unit attached to finger

19
25

25

26

27

28

32
40



II1.

ITT.

1v.

VI.

Vi1,

VITT,

IX.

LIST OF TABLES

Analysis of variance of response time (errors excluded) . .
Analysis of variance of response time {incorrect responses)

Total number of correct and incorrect responses for each
stimulus signal grouP o v v v o o o o 6 + o o s 5 s v s o

Analysis of variance for the effect of correct-incorrect
responses on response time .o .o o v s v 4 e e 0 e e 4w e

Analysis of variance {correct responses) . . « « o« » « &
Analysis of variance {error SCOTres) v + v « o o o +» o o o

Mean errcor scores as a function of neise condition and
subjeclive nolse annoyance sensitivity . & + o« & « + +

Kendall tau correlation coefficients for subjective noise
annoyance sensitivity and dependent variables ., . . . . .

Volume pulse response, pulse rate, and forearm
clectromyogramn as & function cof ncise condition and
noise anncyance sensitivity o o . ¢ v e 4 4 b 4 4 4 e e

“vi

10

11

1z

13
2k
46

L7

b7

49



I. INTRODUCTION

Noise has long been considered an undesirable contaminant of man's
'envirqnment (Committee on Environmental Quality, 1968). Extreme levels are
known to be damaging to the auditory mechanism, and community noise pollution
is today identified as a major source of human annoyance and as a significant
societal problem (cf. Ward anlericke, 1969). While industfy'commonly regards
noise aé an environmental gtressor which degrédes worker performance and pro~
ductivity, it is mot clear from research studies that noise typically does affect
task performance adversely; indeed there is some suggestion that noise may
facilitate task perfdrmance,(gg. Teichner et al,, 1963). Overall, however, and
despite the fact that noise effects on performance have heen Fhe topic of many
studies, results have been contradictory and difficult to generalize. Reviews
by Broadbent (1957) and Kryter (1970) have emphasized specific problems in
interpreting the results of noise research which stem from inadequacies in
experimental methodology that have been a plague to this area of study.

Typically, investigations have used a variety of specific tasks which
purport to measure a diversity of-human (psychological) functions, e.g., percep~
tual, perceptual-motor, attentional, or cognitive. From more recent studies it
appears that noise adversely affects performance on signal detection, choice
reaction, and complex sensorimotor tasks (e.g. Broadbent, 1954; Jerison and
Wing, 1957).‘ Other tasks, yilelding results in the same category, appear to
‘demand a high level of cognitive, or attention-sharing, activity {e.g. Broadbeﬁt,
1958; Woodhead, 1964; Jerison; 1954, 1959; Dornic, 1967)., Results demonstrating
a facilitative effect-of noiée, however,lare found with tasks involving either
one source of input information or little cognitive_activity (McBain, 1961; Kirk
and Hecht, 1963; Davies and Hocﬁey,f1966). While it is tempting to generalize'

that adverse effects of noise are more likely with "difficult” or "complex" tasks,



the use of such qualitative labels precludes more rigorous definition of task
parameters which are likely to be sensitive to noise. TIn the cognitive, infor-
mation processing domain, for example, the definition of complexity needs further
elaboration. Results to be reported hereiﬁ show noise effects to be dependent
upon the level of difficulty (defined below) which varied with three different
information processing tasks. The specific rationale for each of three studies
is presented at the outset of each of the three major sections to follow.

The fact that under certain conditions task performance is improved under
ambient noise poses difficulties for those who may wish to regard noise as a
distractor (cf. Broadbent, 1957; Teichner et.al., 1963). Perhaps a more complete
theoreticzl position comes from the idea that noise is arousing (g{, Broadbent,
1963). Evidence that noise does increase physiological arousal comes from
studies showing an increase in several autonomic and cortical measures in the
presence of noise (cf. Davies, 1968; Kryter, 1970; Plutchik, 1959). The rela-
tionship between arouszl and prerformance, it has been hypothesized (Hebb, 1955),
takes the form of am inveried U7, f.e., periormance is puorer under conditions
of underarousal or overarousal, best at some optimal level of srousal. The
challenge of a task and the incentive to perfoxm well are ¢ypically assumed to
be sources of arousal. Under the zbove model then it is presured that noise
improves performance when task-related arousal is low, but impasirs it when such
arousal is already optimum-to-high. Accordingly a more demanding task is more
likely to be impaired by noise. The interaction hetween nolse (arousal) and
levels of task difficulty is the subject of the first two studies reported herein.
Additionally the first sfudy reported below deals with the important question of
whether performance improvement can occur during noise exposure when an individual
is attending to task information.

Noise effects upon performance also appear to be a functica of the temporal

characteristics (patterning, continuity, or periodicity) of noise exposure; for
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example, a number of studies have shown that for tasks requiring simple detection
or decision responses, an unchanging noise background has no effect on task
performance, while a varied noise background may improve performance (cf. Mirabella
and Goldstein, 1967). On the other hand, Eschenbrenner (1971}, Plutchik (1959),
and Sanders (1961) have found performance on sensorimotor and other complex tasks
to be differentially impaired by exposure to intermittent versus continuous
noise. The third study reported herein was designed to evaluate the differential
effects of noise upon cognitive task performance of periodic and aperiodic inter-
mittent noise.

In reviewing the results of previous research on noise-performance effects,
including the ambiguities which characterize many findings, it is apparent that
the factor of individual differences has received little attention. The possi-
bility that individual performance response to noise exposure could be a function
of personality factors should be the tople of definitive study. Study 3 reported
herein is thus also concerned with this question, and additionally explores the
relationship between individual noise sensitivity and autonomic response to noise.

In toto, three studies of noise effects upon information procesging task
performance are described in this report. Colléctively these are concerned with:

(a) the effect of variations in the time patterning of noise exposure;

(b) the relationship between noise-induced arcusal and task difficulty

{or task arousal); and

(¢) individual differences in physiological arousal response to noise.

II. STUDY 1: NOLSE ONLY DURING ATTENTION T0 THE TASKl

Statement of the Problem

McGrath (1963) has summarized a theoretical position offered by Broadbent

which suggests that the beneficial effect of extraneous stimulation, such as

lconducted by John F. 0'Brien



noise, is dependent upon certain task conditions. In short, the task must be
structured so that brief intervals are available when no analysis of task infor-
mation is necessary. During these periods the subject performing the task can
momentarily divert attention to noise stimuli. Results of studies by McBain

(1961), Watkins (1964}, and Davies znd Hockey (1966} involwving tasks which contained
no such intervals, however, have demonstrated improved performénce under noise,
Their findings suggest that performance may be lmpreved by noise even when the
subject is attending to task information. In the present study the foregoing
statement, treated as.an hypothesis, was subjectéd to empirical test. Additionally,
an attempt was made to determine how noise interacts with the cognitive demands of
the task. The task required the subject to identify the number of targets (from 0
to 3) briefly presented in a visual display. Detéction of each target was con-—
sidered to constitute an additional cognitive demand. Thus, it was hypothesized
that improvement in speed of information processing under noise would decrease as

the number of correctly identified targets increased.

Method

Subjects. Eighteen male volunteer subjecis were recruilted from‘ﬁndergraduate
psychology courses at the University. Each was administ@fedg zind passed in satis-
factory fashion, tests foi hesring loss and color wlindasss.

Stimulus Materials. Each of 24 signals was constructed by selecting one item

from each of the three categories of stimuli that are described by Figure 1; that
is, each stimulus signal contained three elements -- one from each category — as
exemplified in Figure 2. 1In creating the stimulus iteme (Figure 1) an effort was
made to reduce confuslon between and within categories. Thus, colors and geometric
shapes were highly discriminable visually, and their names had cqual ratings in the
Thorndike-Lorge {(1963) word list. No strong associations exist~d among letters |

(Underwood and Schulz, 1960),and none were first lettexrs of color or shape names.



Outlines of the geometrical shapes and letters were drawn on white back-
grounds with black India=ink; Colors were also painted on white backgrounds in
the shape shown in Figure 1. Subjects were Instructed that these shapes were
of no importance ana were not to be confused with geometrical shapes. All stimulus
signalé were photographed, reprodpgedAas 35 nillimntﬁr slides, and projected onto
a2 1/2 x 6 inch (6.35 x 15.24 cm.) scre;ﬁ when presented to the subject.

In terms of the subject's task the 24,stimu1us_signals.were of fﬁur different
types as defined by the appearance (or non-appearance) of "target" items. Three
items (green, H, and triangle), one from each ofzthe categories defined in
Figure 1, were designated as targets for the entire study. For purﬁoses of thc
task a stimulus signal could contain 0, I, 2, or 3 targets. Each of the four
types of signals was thus represented by six different siidcs. For purposes of
description here then each of the six slides in group 53 contained all three
target items, while thoée in gr;ups 52, 51, 2nd SO contained 2, 1, and 0 targets
respectively.

Individual 53 signals differed only in left to ;ight arrangement of target
jtems. Each target appeared twice in each position. Y

Construction of 52 and 51 signals was carried out in tﬁo‘atages. Stage I
involved assignment of target items from left to right positions in the signal.
For §2 signals, tafgets appeared in either poseitions 1 and 2, 2 and 3, or 1 and 3.
Random assignment of‘Fargets to tbese positions was restricted so that (a) each
target appeared four times, (b} térgéts appeared together no more than twice,

(c) targets never appeared ﬁofe :ha;.once in the same left to right order, and
(d) the same two targets névéf appeared with the same non-target more than once.
S1 signals involved presentation qfﬁiargcts in either positions 1, 2, or 3 as

defined from left to right. T&rgeté were randomly assigned to these positions
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Stimulus liems arranged by category

Figure 2. BSample stimulus signal
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with the restriction that no target appeared in the same position more than once
and that‘each target appeared twice.

Stage IT first involved random assignment of stimulus categories for non—
target items to the remalning positioms. For 52 signals this assignment was
restricted so that each stimulus category appeared twice and items from the same
category appeared only once. Restrictions placed on Sl signal'éssignment assured
that (a) each stimulus category appeared four times, (h) two categories appeared
together no more than twice and (c) no categories appeared together more than
once in the same left to right order. Assigﬁment of categories to positions
was followed by completely random assignment of non~target category items.

For S0 siénals, stimulus categories were randomly assigned from left to
right posifions with the restriction. that each category appear twice in each
position. Non~target items for each category were then randomly assigned to
category positions. Throughout the list of 24 signals each non-target item
appeared four times,

83 stimulus signals (i.e. signals containing all three target items) also
served as "tafget availability signals". These were presented prior,to the
presentation of each stimulus signal. The purposes of this procedure were (a)
to lower the subject's degree of cortical arcusal and (b) to ensure that he had
the three targets correctly stered in active memory., Each stimulus signal was
always preceded bf the same target availlability signal. Selection of the parti-
cular target availability signal to precede each stimulus .signal was guided by a
criterion which assured maximum jncompatability between the left to right order
of stimulus categories in the two signals. . For example, if the stimulus signal
contained a coloxr iIn the first positioq, it was preceded by a target availability
signal with a color in the third position.

Noise Generation.- A recording of speech played in reverse was used as

irrelevant auditory stimulation (moise). According to McBain (1961), such



stimulation fulfills the requiresments of variability and low intelligibility,
i.e., it carries no meaning for the perceiver. The particular speech used was

a recitation by a male voice of the glphabet and numeralo {1-50). It was pre-
sented over a headset at sn averapy sound pressure Levoel of 80 dB and varied over
a range of 65 dB to 94 dB.

Test Environment. Testing was conducted in an audiometric testing booth.

The sound pressurz level ZJngide 1le bootk was 22 dR. A Fodsk slide projector
mounted outside the booth was used to proiect signals througbh the booth obser-
vation window onto the screem. {cotached to th@ top of the screen in the subject's
field of view was a white warning ilght. ¥Yhe subject was seafed at a small table
facing the screen. Mounied on this teble were two adcvophones. One fed Into a
voice-actuated relay and then into a small computér which measured and automati-
cally recorded on punched paper tape the subject’s response time to each stimulus
signal. Response time, recorded in meec., was deflned as the time interval
between appearance of the stimulvs signal and the beglimning of the subject's
verbal response. The oty wleropheme fad futo z fupe wecorder and enabled
the experimenter to moriltor subject responses and seore wserracy (fogrect or
incorrect). The same computrer was used In combination wich i ney Dickinson
elecironic timers to program the occurrence of task events and noise stimuli.
Procedure. Each trial began with presentation of a target avallability
signal. During this period tﬁe subject was asked to rehearse aloud the name of
each target by reading the arxray from left to right; this was done repeatedly
at his own desired rate. Rehearsal lasted 10 seconds and was terminated by
illumination of the warning light. Two seconds after the warning light, the
target avaiiability signel disappeared and a stimuwius signal appeared. Subjects
were told to respond by saying either "0, 1%, "2", or "3" de;ending on the

number of targets appearing in the signal. A response automat:ically replaced
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the stimulus signal with a pew targei availability signal and thus began a new
trial. Subjects were told to respond as qﬁickly and as accurately as possible.
Hopefully, these‘instrucfions gave all subjects equal response sets for speed
and accuracy. They were also told that optimum performance could best be
achieved by paying attention to the left to right order of targets in the target
availability signals.

Each subject received 24 practice trials followed by 2 two~miuufe rest
 period. During this period he sat quietly in the beoth while the experiménter
recycled the equipment. The rest period was followed by 48 test trials. Except
for the first six practice trials when the experimenter remained in the booth
to ensure that the subject performed correctly, each suﬁject performed alone
in the booth while the experimenter monitored performance from outside.

Noise, when presented, occurred simultaneously with presentation of the
stimulus signal and terminated with'its response. Each subject was instructed
to ignore this stimulation and to perform the task as instructed.

Experimental Design. Each subject received the same random order of stimulus

signals during practice trials. Randomization procedures for test t¥ials were
based on three‘independent variables: (1) Blocks of time, (2} Signals (80,
81, 52, or 83), and (3) Environment (noisg or éuiet). There were six blocks
each containing eight trials. Within each block two different members from

each stimulus Signal gfoup were presented (one in quiet and the othef with
noise). Thus, ignoring individual stimulus signals and considering only stimulus
signal groups, each block contained eight treatment conditions. The first .
randomization procedure, carried out separately for each subject, produced

a completely random order of these treatments for each block. The second
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procedure was then conducted separately for each of these treatments and
involved assignment of the six individual members from each stimilus signal
group. This was accomplished by use of a six-element, balaenced Latin square,
which assured that individual stimulus signals were balanced with respect to

blocks for each trestment condition.

Results
Three sets of data were available for analysis: (&) response times for
804 correct responses (response times for 10 correct responses were missing
as a result of mechanical failures), (b) response times for 50 incorrect
responses, and {c¢) total number of correct and incorrect responses. The first
two sets of data were subjected to a least squares analysis of varience for
unbalanced designs and the third to a chi-square test of independence.
In the case of the data for correct responses, as may be seen in Table I,
statistically significent main effects were found for Subjects, Environment (Noise),

Signals,and Blocks; however, none of the interactions was gignificant.

TABLE I. ANALYSIS OF VARIANCE OF RESPONSE TIME (ERRORS EKCLUDﬁD)

Source af MBS F

Sub jects 17 1,391,301.62 3L, Bl
Fnvironment (Noise) 1 218,380.93 5. L6
Signals 3 516,858.72 12,93%#
Blocks 5 285,408.04 T.1h**
Env. x Signals 3 22,545,08 0.56
Env. x Blocks 5 50,672.37 1.27
Signals x Blocks 15 30,590. 37 -TT
Env., x Signals x Blocks 15 16,027.25 .40
Error : T4O 39,969.02
Total 80k

¥ n < .02
¥ pn o< 01

B%E p o< ,001
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Mean response time recorded while subjects were exposed to-noise {968 msec.)

wag faster than mean response time recorded under quiet conditions {1001 msec.).
Marginal means for the six blocks were respectively 1059, 1007, 991, 953, 949,
and 949, An improvement in mean response time of approximately 100 msec.
occurred over the first four blocks; however, times Tor the lagt three blocks
were fairly stable.

Mean response times for S0, S1, 52, and S3 stimalus signals were
respectively 989, 1013, 1030, and 910 msec.; these were compared using Duncan's
New Multiple Range Test. All three comparisons involving S3 stimulus signals
were statistically significant (p < .05), the 83 stimulus signals being pro-
cessed in less time than any other signal. A statistically significant
{p < .05) difference was also found between the means for 50 and 82 stimulus
signéls.

The second analysis concerned the 50 response times for incorreet responses.,
As may be seen in Table IT, the only statistically significant source of wvaria-
tion ameng incorrect response times was Subjects., None of the experimental
conditions had an effect on these response times., The response timejfor one
incorrect response was inaccurately recorded and thus excluded, reducing the

sample size to L9,

TABLE IT. ANALYSIS OF VARIANCE OF RESPONSE TIME (INCORRECT RESPONSES)

Source ar Ms F
Subjects S SRR © 85,980.27 2.41%
Envircenment (Noise) 1 h3,216.91 1.21
Signals 3 17,169.68 . 48
Blocks 5 45, 827.28 1.28
Snvironment x Signals 3 31,306.60 .87
Error 19 35,626.96
Total 18,

*P < .05
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The third analysis was undertaken to determine whether the 50 incorrect
responses were equally distributed among {a) the two environmental conditions,
(b) the four stimulus signal groups (SO, S1, 82, 83), and (c) the eight environ-
ment x stimulus signal conditions. Three chi-sguare tests of independence were
performed, and these indicated that the occurrence of errors was independent of
environment (x2=,0h2; 1 df; p > .05) and environment x stimulus gignal classi-
fication (X2=2.88; 7 df; p > .05}, but dependent on stimulus groups (x2=25.70;

3 d4f; p < .05}, Most of the errors occurred when subjects were responding to
either 831 or 52 stimulus signals as revealed in Table ITT.

TABLE ITI. TOTAL KUMBER OF CORRECT AND INCORRECT
RESPONSES FOR EACH STIMULUS SIGNAL GROUP

Stimulus Signal

20 51 52 53
Correct 210 199 187 208
Incorrect 3 14 26 T

+

One final analysis was underteken to determine if mean response time for
incorrect responses was different from that for correct responses. These data
were also analyzed using a least squares analysis of variance (Table IV) for
unbalanced designs which produced a sum of squares for the correct-incorrect
comparison adjusted for the effects of subjects, signals, environment, and
blocks. The analysis shows that mean response time for incorrect responses

(958 msec.) was significantly faster than for correct responses (984 msec.).
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TABLE TV. ANALYSIS OF VARIANCE FOR THFE EFFECT OF CORRECT-INCORRECT
RESPCNSES ON RESPONSE TIME

Source j ar : M8 F
Subjects 17 1,432,754.10 36.378
Environment (Noise) ' 1 133,752.89 3.79
Signals ) 3 501,491 .80 12.73
Blocks ' 5 287,097.38 7.29
Correct-Tncorrect 1 152,635.95 3.87%
Error ' 836 39,395.11
Totay 863

*p < -QJBI'
f}
DiscuSsionQ

¢

The hypothesis that signals presented with noise would require less time
for ¢orrect procéssing than signals presented in quiet was supported by the
results. Both the noise and task conditions used in this study would favor an
arousal theoryiexplanation of this finding. While one could argue that both

the presentation of the warning light and the subsequent demands placed on the

subject in t%rms of responding to task signals were stimulating, it was assumed

that other aspects of the task lowered cortical arousal. During the interval

-,
preceding elach stimulus signal, the subject was asked to repeatedly rehearse the

|

names of t%e three targets present on the sereen. Each subject was engaged in

this highly repgtitive rehearsal for 70 percent of the experimental session.
i

Also he receiveb little auditory input as a result of confinement in the

audiometric testing booth. Thus, it seems plausible to assume that subjects
'
experienced a considerable reduction in varisbility of stimulation which
¢
S
" arousal theorists agree is necessary for optimum arousal of the cortex,

|

According tﬁ arousal theory, presentation of an additional, arousing stimulas-

tion (under fsuch conditions) should improve performance.

2Theoretice{'l implications of the results for a medel of human information
processingfare discussed at greater length in O'Brien, 1972,

j

]

A
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The noise used in the present study could be considered additional, arous-
ing stimulation for two reasons. It was both variable and intense. The results
of both the McBain (1961) and the Kirk and Hecht (1963) studies indicate that
variability of noise is important. In the McBain study noise was a reéording
of speech played in reverse and involved changes in voth frequency and intensity.
Noise used in the present study was also speech played in reverse, and ié&
involved as many as five intensiiy changes per second. The average changé%was
approximately 10 dB. Also, since noise did not occur on sll trials, its K\
presentation represented a sudden change from almost complete quiet to audilbry
stimilation. Similerly, Watkins (1964) has found that a mode of presentatioﬁ
similar to the one used in this study was more beneficial to performance than
continuous noise. Both physiclogical data (Helper, 1957; Blum et al., 1967)
and performance data suggest that intense noise is arousing. The average
intensity of the noise used in the present study was 80 dB with peaks:as high
as 94 as, Thus, it seems reasonable to attribute the facilitation préduced

1

by noise in the present study to increased arousal. ,
=
According to Broadbent, arousal can be sugmented only when a suﬁject's

neural filter selects noise stimuli, and, at such times, response to task
information is not possible. Conversely, he seems to suggest that during

periods when the subject is processing task infermation, noise is éompletely
[

filtered and has no effect on behavior. Results of the present st&?y challenge
both of these assumptions, HNoise was presented only during periodsxwhen the
subject was required to process and respond to stimulus signals, and, was the
results indicate, the beneficial effect of noise occurred during theseiperiods.

}
Thus, this finding suggests that noise is not completely rejected by min's

. . . |
nervous system when he is processing task signals. :
L
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In terms of Eroadbent's model, two possibilities deserve nmention. First,
noise and task information {stimulus signals) could have been selected con-
comitantly by subject's neural filter and both dealt with as a cue. However,
this seems unlikely since Broadbent's assumption that irrelevant inputs are
filtered is supported by research in other areas. For example, Norman (1968)
reviewed several studies showing that when sﬁbjects are stimulated at each ear
with a different message, they have no problem accepting one message and reject-
ing the other. Since noise in the present study was irrelevant to performance
of the task and contained little or no information, it seems plausible to assume
that it was rejected as a cue. As a second alternative, noise could have been
routed through the arousal system and filtered before reachiﬁg the cortex as a
cue. While this explanation disagrees with Broadbent's notion that noise must
be selected by the filter as a prerequisiﬁe £o increasing arocusal, it seems more
plausible in view of existing data.

It was also hypothesized that proecessing a difficult signal would arouse
a subject more than processing a less difficult signal. Thus, it was predicted
that an increase in arousal would have a greater effect for the easie;t signals.
Results did not support this hypothesis. Further, mean response times for the
stimulﬁs signal groups did not vary as a function of the suditory environment.
Perhaps an increase in arousal produced by signal difficulty, if it occurred,
was insignificant in comparison to that produced by noise.

The task used in this study was somewhat uniqge. Results_obtained with other
tasks suggest that the effect of noise is to aid the subject in focusing attention
on the tgsk at hand. In the present study, the task was designed so that the
subject would have no problem determining when stimulus sigrals were to appear.
Each stimulus signal was preceded by a warning light and immediately prior to its

appearance, the target availability signal disappeared end the screen became dark.



16

Thus, it would seem that his attention should have been adequately focused.
Furthermore, the noise did not occur until he was processing the stimulus signal;
hence, it would seem that the facilitative effect of noise was not at the level
of attentional processes but at a more central level.

Whether one favors an arousal model or not, the findings of this study
strongly suggest that: {a) noise improves man's ability t¢ respond rapidly to
visual information; (b) in contrast to Broadbeni's position, this improvement

may occur while man is processing and responding to task information.

IIT. STUDY 2: NOISE ANE TASK DIFFICU‘LT‘E3

Statement of the Problem

When a worker is already thought to be performing at his capacity, it is
argued that additional task demands must lead to some compromise in efficiency,
e.g., failure to respond, errors. ILncreasing both noise level znd task load
along some quantifiable dimension {(e.g., task speed) should raise an individual's
level of arousal by increasing the overali level of stimulation. Undér conditions
of overarousal, performance decrement is to be expectad.

Tndustrial workers are often required to perform at serial repetitive,
machine-paced tasks, quite often at very fast speeds, not uncommonly in loud
ambient noise conditions. Frequently, noise exposures are aperiodic. This form
of noise, unpredictable in time, appears to have a more adverse effect upon the
performance of demanding tasks than either continucus or periodically intermittent
noise (cf. Eschenbremner, 1971). Thus the interaction effects of work pace and

aperiodic noise are of both practical, as well as theoretical iliterest.

3Conducted by H. Harvey Cohen
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Increasing the speed at which task relevant signals are presented results
in a reduction of the time available for decision-making. Therefore, if one is
to respond to a signal, he must do so more quickly, thus increasing the likeli-
hood of decision errors. If the signal rate is very fast, i.e., if it exceeds
the individual's channel capacity, a number of signals may be missed altogether,
since the individual ceannot respond quickly enéugh to the signals, thus result-
ing in another king of error, i.e., omissions. In order to cope with the speed
stress imposed by an iﬁcreasingly fast signal rate, an individual may adopt
either of two possible response strategies: (1) he mey keep up with the fast
work pace and consequently commit more decision errors, or (2) he may filter out
more task relevant stimuli, i.e., cmit more signals, as hisz limited capacity
decision mechanisms fail to cope with the increasing queve of serially-presented,
discrete signals. A fast-paced task should demand more of ap individual's
limited information handling capacity than a slow-paced task and should, therefore,
be more prone to the adveréé effects of noise stress. According to arousal
theory, under both noise and speed stress conditions, the individuasl should
exhibit/a breakdown in efficient performance, thus increasing error pr;duction,
as his limits of efficient performance are exceeded.

In the work to be reported, the fcllowing‘hypotheses were tested: (1) noise
would adversely affect ?erformancé on a paced, serial fcpetitive task; (2) the
faster the work pace, the poofer Qoﬁld be performanée; and (3) noise would more

adversely affect performance at fast work paces than at slower work paces.

Method
Subjects. Six male subjJects were recruited from the undergraduate student
population at the University. Their ages ranged from 21 to 26 years with a median

of 23 years. BEach subject was individually screened for normal hearing before
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participating in the study. "Normal" hearing was operationally defined as a
detectability threshold of no greater than 35 dB at any test frequency. As
determined by standard audiometric methods, all subjects had normal hearing

within the frequency range of 250 to 8000 Hz.

Task Avparatus. Adapted from a discrimination reaction time apparatus

used by Chambers (19543), the four-choice serial task %o be described involved

a single intervening decoding operation between stimulus presentation and
subject response. The additional descoding, plus a less compatible arrangement
of stimulus lights and response buttons as shown in a sketch of the apparatus
(Figure 3), should incresse the cognitive requirements imposed upon the subjects
{in contrast to a simple four-choice task); this theoretically at least should
enhance the sensitivity of the task to environmental stress in general, and to
nocise in particular.

The task operates as follows: one of the four stimulus lights is randomly
illiminated signaling the operator to respond as accurately as possible with one
of the four response buttons according to the displayed code (see Figyre 3)}. The
top-to-bottom position of the illuminated light directs the subject to a left-to-
right position in the code. That digit, contained in the designated position, in
turn indicates which button from left to right is the appropriate response. If,
for example, the light in position three is illuminated, the subject should,
according to the sample code (L213), press response button one (left to right) in
order to score a correct response. Pressing any other button is recorded as an
error. If the first light goes on, the subject should press response button four,
and so on. After each trial another light and code automatically appears according

to two separate random progrems, one for the lights and one for the codes.
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Figure 3. Four-choice serial task
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The four-digit code was presented on a rear-projection type display.
Random order of presentation of 12 codes was used: 2143, 231k, 2341, 2413, 31k2,
3241, 3h12, 3k21, Li23, b132, L4312, 4321. The four response butions were
microswitch-operated. Task programming and logic circuitry are described in
detail elsewhere (Cohen, 1972). TFor this research the task display panel was
located in a double-walled acoustical chamber.

Random programs for both the lights and the codes were frequently changed.
Separate counters recorded {1) total trials presented, (2) total responses, snd
{3) total correct responses. Subtracting (3) total correct responses from (2)
totel responses yields total incorrect responses (decision errors). Subtracting
(2) total responses from (1) total trials presented yields a second type of error

score, total omissions.

Noise Generation. The noise stimulus consisted of rapid intermittent pulses

of broadband noise produced by a Bruel and Kjaer random noise generator, type 1ho2.
The intermittent noise was presented aperiodically, such that noise durations were
constant, but internoise intervals varied randomly about & mean value within a

f
specﬁfied range. Both noise durations and interncise intervals were automatically
generated by Massey Dickinson timing and programming equipment. This circultry
(Cohen, 1972) produced 10 randomly-selected internocise intervals ranging from .150
sec to 1.50 sec in 10 equal .150 sec steps. The mean interncise interval was,
therefore, .825 sec:; noise quration was held constant at 1.00 sec.

SubJectively, the rapidly intermittent, aperiodie noise was quite like that
produced by a wide variety of office and computing equipment, e.g., typewriters,
calculators, keypunches, teletypes, printers, ete., i.e., rapid, intermittent
pulses of constant duration, broadband noise separated by rapid, variable inter-

noise intervals. Such noise is frequently encountered in industrial operations

as well, e.g., many automated or semiasutomated assembly processes (Fornwalt, 1965).
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Noise level at the earphones {Telex Model 1200-42) was measured to be
100 dB(A). A plot of the measured-octave band frequency spectyrum appears in

Cohen, 1972.

Experimental Design. Two independent variables, task speed and noise

level, were experimentally manipulated. A third independent variable, time at
work within sessions, was also evaluated. Three levels of task speed or

vork pace, qualitatively referred to as slow, medium, and fast, were presented.
In the slow work pace (fask speed) conditions stimuli were serially presented

for 2.0 sec duration, i.e., a subject had 2.0 sec in which to make a response.

In the medium work pace conditions stimuli were prgsented for 1.5 sec, and in the
fast work pace conditions a subject had only 1.2 sec in which to respond. Thus,
3¢, 40, and 50 signals/min were presented in the slow, medium and fast work pace
conditions respectively.

Two levels of the second independent variable, noise intensity, were also
presented for each of the three levels of task speed. The "quiet" conditions
were operationally defined as 50 dB(A) of aperiodic noise while 100 aB{A) of
apericdic noise defined the 'noise" conditions.

Data on the third independent variable, time at work within one-hour sessions,
was sampled regularly at five-minute intervals. For analysis, however, it was
decided to aggregate the time-sampled data into four 15-minute time blocks.

A repeated measurements model was employed with each subject receiving all
experimental treatments, thus serving as his own cohtrol., Each subject, therefore,
received a total of six experimental treatmenté--three levels of task speed for
each of two noise environmentsj The order of the six experimental treatments was
independently randomized for each subject, such that each subject received a

different random order of experimental treatments. Random orders were selected
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so that experimental treatments always occurred on different days for all sub-
jects. Therefore, any possible effects of having one treatment following
ancther, or of learning effects confounding treatment order, were effectively
counterbalanced.

Tach of the six treatment conditions was presented to subjects on six
different days, i.e., one day per experimental treatment. Subjects performed
the task contiquously for one hour under each treatment condition. Therefore,
each treatment constituted a separate one-hour session. Each subject partici-

pated in a total of seven one-hour sessions on seven consecutive weekdays.,

Procedure. In the first one-hour session each subject was trained on the
task at the fast speed (50 signels/min) and in quiet (50 dB(4)). Pilot work
established that performance stabilizes at all three task speeds in less than
one hour of practice. The fast task speed was selected for training, since
the fastest speed was naturally the most difficult. ZEach hour training session
was divided into 12 five-minute work periods, separated by brief rest periods,
during which the experimenter gave each subject summary feedback and suggestions
for improving his performance.

Before training began, task instructions were read and audiometric tests for
normal hearing were taken. At the start of the second session on day 2 additional
instructions were read explaining the procedures to be followed for the succeeding
gix experimental sessions. In addition, subjects were instructed to take com-
fortable sitting positions and were encouraged to frequently change their hand,
arm, and sitting postures in order to minimize discomfort during the one-hour
work sessions. Before the start of each daily session, audiometric checks against

possible temporary threshold shift and 48 warmup task trials were administered.
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A1l subjects were paid an hourly rate of $3, or a total of $21 per sﬁbject
for the seven work sessicns. In addition, a $10 bonus was offered to the person
having the best overall performance scores at the end of the study as an addi-
tional incentive for maintaining a high level of performance throughout the study.

In additioﬁ to the experimental controls already discussed, several
variables which have been shown to affect task performance specifically were also
controlled. Temperature within the environmental chamber was held at a comfortable
70° F. Illumination was artificial, indirect in order to prevent glare, and was
unvarying for each subject. All tests were run between the hours of 9:00 A.M.
and :00 F.M., each subject working the same hour on each of his seven test days.

As previously discussed, the task was paced, such that the operator had to
make & response, either correct or incorrect, in the allcoctted time, or an
omission was recorded. In order that all subjeets should adopt a common response
sfrategy, sﬁbjécts were instructed to try to respond to each event, This had

the effect of minimizing omissions.

Results P

Since task speed was variéd as an independent variable, a different total
number of events was presented in one-hour sessions for each of the three task
speeds. Thus, the slow task speed (30 signals/min) presented a totsal of 1800
gignals during one-hour sessions while the medium (40 signals/min) and fast
(50 signals/min) task speeds presented 2400 and 3000 total signals respectively
during one-hour sessions. In order, therefore, to compare performance among the
three different task speeds, all measures were first converted to percentage
scores.

Mean performance scores attained during training revealed that performance

did, in fact, stabilize in less than oné hour of practice, thus confirming the
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pilct data. Additicnal discussion of the pilot testing and training data, and
of the statistical analysis approach used herein, appears in Cohen, 1972. Prior
to the principal analysis of variance, to be discussed next, an arcsin trans-
formation of the rpercentage score data wag Performed.

Results of the analysis of correct response data (Table V). revealed a
highly significant noise condition mainp effect, work pace main effeect, and noise
condition x work pace interaction (p < .001). Figures 4 and 5 illustrate the
noise condition and work pace main effects respectively. Figure 6 demonstrates

the noise cordition x work pace interaction effects. Also significant (p < ,025)

TABLE V. ANALYSIS OF VARTANCE (CORRECT RESPONSES )

Source of Variance ar M5 F
Noise condition (N) 1 3.9839L4365 157.53%%
Work pace (P) 2 3.52370783 62, Ll wx
NxpP 2 0.90028277 21, 77%%
Time at work (T) 3 0.00515195 C.8L
NxT 3 0.01833381 5.11%
PxT ) 0.00893962 _2.90%
FxPxm 6 0.00540362 s1.24
Subjects (g) 5 0.54343712
Sx N 5 0.02529023
8x P 10 0.05643120
SxNzxP 10 0.04135880
SxT 15 0.0061L447Ts5
Sx N xT 15 0.00358991
SxPxT 30 0.00308225
SxNxPxT _30 0.00435941
Total 143

*p < .025

®¥p < ,001

were the noise condition x time at work, and the work pace x time at work inter-
actions (Figures 7 ang 8). Time at work within one-hour sessions was not signifi-
cant as a main effect, i.e., there were no differences in oversll performance

among the four 1S5-minute time blocks,
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Multiple compariscns between means for significant main effects, using
Scheffe's procedure, showed that mean performance at the three work paces
(slow, medium, and fast) were all significantly different from one another.

The null hypothesis that mean performance at the fast work pace does not differ
significantly from the average mean performance at the slow and medium work
paces was rejected since the Scheffe statistie for this orthogonal contrast,
0.872, is clearly greater than 0.06L, the critical value. Also, mean
performance at the medium work pace was found to be significantly different
from mean performance at the slow work pace, since the Scheffe statistic for
this comparison, 0.200, is alsc greater than the criterion value of 0.06L.

Using a procedure for interactions recently recommended by Harter (1970),
miltiple comparisons between differences in pairs of means for the noise condi-
tion x work pace interaction revealed that the difference between performance
in ncise and in gquiet at the fast work pace was significantly different from
that at both the medium and slow work paces, but that the difference between
performance in noise and in quiet at the medium work pace was not significantly
different from that at the slow work pace (see Figure 6). The latterJdid,
however, approach statistical significance. The critical values (p < .01) for
tests of ordered means two and three steps apart, with 10 4f for the standard
grror of the mean, are 0.265 and 0.311 respectively. These values are exceeded
by both the fast and medium work pace interaction elements and the fast and slow
work pace interaction elements (0.366 and 0.535, respectively), but not guite by
the medium and slow work pace interaction elements (0.169).

In sumary, the statistical analyses (all of which are not reported here;
cf. Cohen, 1972) revealed that overall performence in noise was signifi cantly
poorer than overall performance in quiet (Figure L4). Also, performance at the

fast work pace was significantly poorer than performance at both the medium and
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slow work paces, and performance at the medium work pacé was significantly

poorer than performance at the slow work pace (Figure 5. Further, noise affected
performance more at faster work paces than at slower ones (Figure 6), as
hypothesized. Stated another way, the faster the work pace, the grester were the
adgverse effects of noise on task performance.

This latter finding is supported by subJects' subjective reports. At the
conclusion of the study on the last day, subjects were asked to comment on their
performance under the various experimentsl conditions. All subjects reported
that the fast work pace was the most demanding. Further, they all believed that
the loud aperiodie noise adversely affected their performance, particularly at
the fast work pace. (At no time during the actual study did subjects receive
verbal feedback on their performance.) For example, several subjects stated
that the loud noise made it difficult for them to attend to dr concentrate on
the task for wvery long. Other subjects stated that the fast work pace itself
was stressful, but the loud aperiodic noise added to their feelings of stress.

All believed that they made more errors in noise and at the fast work pace
particularly.

In addition, subjects reported a number of physiological reactions indicative
of a high state of autonomic arousal or stress, e.g., profuse sreating (particularly
in the palmar and armpit regions), muscle tension (back of the neck and shoulders),
hand and finger cramps, blanching of the hand and fingers, and feelings of finger
coolness or numbness. It is well known and documented that people experience
considerable individual differences in their avtonomic response patterns to stress.
It is not surprising, therefore, that subjects experienced several different
reactions; however, all experienced at least one, and typically more, of the above

reactions particularly while performing in noise at the fast work pace.
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The sdverse effects of noise are also reflected in the percent omissions
data, Although these data were too few for s%atistical analysis, their trends
support the data already presented, i.e., performance in noise was poorer than
performance in guiet, particularly at the fast work pace. Omissions aceounted
for well under 1 percent of the total performance scores in quiet at both the
slow and the medium work paces. However, percent omissions rose to about 1
percent of the overall performance scores in noise at the medium work pace and
to Just over 2 percent in noise at the fast work pace. BEven though omissions
were virtually extinguished during training, there was a definite tendeney for
them to increase in noise as a funetion of increased work pacé, in added support
of the noise condition x work pace interaction previously discussed.

Although the principal analysis of variance (Table V) failed to reveal a
significant ¥ x P x T interaction, trend analyses of the six combinations of
neise with work pace considered with regard‘to time on task indicated significant
differences attributable to the fast work pace condition (Figure 9). While
performance at the fast work pace in quiet decreased in linear fashion with time
at work, under ncoise the plot of performence is characterized by an i;verted-U
shaped relationship (lower portion of Figure 9). Altﬁbugh some recovery of
performance under noise occurs during the middle half hour, levels remain well
below those attained in quiet. Presumably in this situation the éeieterious
effects of speed stress and time on task overcome subject effort to adapt to the

noise stress.

Discussion
The results presented above confirmed the experimental hypotheses. In all
cases performance in nolse was consistently poorer~£han performance in guiet; the

effects were reliable and consistent. Furthermore, the effects were not
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transient, as has been suggested by Kryter (1970). Rather, performance in noilse
never adapted to levels as high as in guiet. Clearly., the results suggest the
difficulty of adapting to loud unprediectsable noise even if people are motivated
to perform well and are well trained at their tasks, ag well as the possibility
that noise may facilitate the onset of work decrement due to time on task (work
fatigue) when people must work at very fast work paces for prolonged periods of
time.

Ancther issue raised by Kryter {1970) is resdved in the present study.
Kryter suggests that it is difficult to ascertain from previous studies whether
ncise really affects performance or whether it affects only learning, since
studies demcnstrating adverse effects typically compare the performance of two
separate groups of subjects, one perfaming in noise {experimental group) and one
in quiet (control group). Further, subjects commonly are not well trained at
their tasks, nor are they matched for performance skili. Through use of a
Treatment X Subjects design, and by training subjects to asymptotic performance
prior to introduction of experimental treatments, the present study answers
these objections., The present findings therefore clesarly demonstratéithat noise
adversely affects task performance, and not Just skill acquisition.

The results of the present work further confirm the contentions of Broadbent
(1957) and Hockey (1969) that reliable, consistent, and nontransient adverse
effects of noise can be demonstrated if certain conditions of the task are met;
i.e., the task should be long and continuous (over half an hour), it should
require continual (or time-shared) attention, and it should present task informa-
tion at a high rate. Similarly, the noise should be greater than 90 4B, variable
in quality, or unpredictable in time.

As in the previously-described study in this report, the findings can be

interpreted in terms of an arousal model. That is, noise increases arousal, and
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in the case of a Ffast-paced task a condition of overarocusal leading to perform-
ance degradation occurs as noise level is increased. The effect is on perform-
ance accuracy, i.e., correct responses, rather than upon gpeed of response. No
evidence of lapses, or sporadic periods of inaccuracy, were apparent in the data.

Going beyond theoretlcal considerations several practical implications
concerning human efficiency in suboptimal working conditions appear evident. A
well-controlled field study by Broadbent and Little (1960) shows that a reduction
of 8 to 10 4B, i.e., from sbout 99 4B to 89 dB, in & film production plant signifi-
cantly reduced worker errors, e.g., number of broken rolls of film, but this did
not affect speed of work, thus confirming laboratory findings. There was no
sign that the effects found with these experienced workers (experienced at both
their work tasks and with the noise environment} were less than those met on the
much shorter time scale of the laborstory. The study demonstrates that noise
does produce human error in a real-life situation, even amongst people who are
supposedly used to it.

Finally, therstudy poses some implications for the health and well-being of
a worker exposed to noise and speed étress. The subjective reports a&d physioclogi-
cal reactions indicate an undesirable stress state which if maintained on a
day-in, day-out basis could have undesirable, cumulative effects on a worker's
health. Such physiological costs of work should desirably be designed out of

the worker's man-machine-environment systen.

IV. STUDY 3: NOISE SENSITIVITY AND PHYSIOLOGICAL RESPONSE DIFFERENCESh

Statement of the Problem

The study to be described next was characterized by slight variations in the

task and noise conditions found in Study 2. Thus the serial decoding task used

L‘Conducted by Donald W. Conrad
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in Study 2 was programmed to require short-term memory storage of the displayed
signals. It was reasoned that given a sufficiently complex task that would
rlace considerable demands upon available operator charnel capacity, significant
impairment due to noise might be observed for a task requiring such gognitive
activity. ©Since the task was externally paced, signal rate could be increased
28 high as practicable to ensure considerable mental loading. This type of

task configuration was also considered to be highly analogous to practical
situations in which a person (a) has to continuously decode information such

as numerical dials or digital displays, and also {b) has to rely upoﬁ short-term
memory while being engaged in répid‘compensatory or control manipulations.

Most previous studies invol%ing mental activity have used either continuous
noisé or short bursts of noise as the auditory stimulus (Jerison, 1954
Broedbent, 1958; Woodhead, 1964}  Since it has been found, as noted previously,
that perceptual-motor task performance is impaired under intermittent noise, it
appeared that differential effects of different patterns of noiée might also be
observed for tasks characterized by cognitive getivity. In the present study it
is expected that ncise effects will be greatef for intermitient as coﬁpared with
continuous noise due to the greéter resistance of an interrupted stimulus to
adaptation éffects over time.

As may be cbvious from the foregoing, Bur conceptual approach is again based
upon arousal theory. In contrast to the two previous studies, physioclogical
fesponse measures were included in the present study in order to assess arousal
effects. Together with srousal considerations, however, there is also the
wunderliying concern for physioclogicsal éosts of stress exposure. For example,
Davies (1968) has concluded from the literature that there is evidence that

exposure to 100 dB broadband noise while subjects are engaged in the performance
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of a cognitive task adds significantly to the cost of mental work as indicated
by measures of skin conductance, pulse interval, and muscle tension.

A third sspect of this study concerns existing evidence that the performance
of somatic or anxious types of people tends to be affected by intense noise while
more stable subjects are not so affected. Using the Heron personality inventory,
EBroadbent (1958) found that extroverts showed greater deterioration in a prolonged
mental subtraction task than introverts; furthermore, extroverts showed more
deleterious effects from 100 dB broadband machinery noise. Kryter's review
(1970, pp. 547-550) cites additional evidence from other studies which reveal
in general that subjects who are found to be "anxious," "introverted," or
"somatic responsive” on the basis of personality ratings are more adversely affected
by noise in the performance of mental (I. Q. tests and arithmetic) and motor tasks
(reaction time and tracking) than are better adjusted subjects.

In order to assess further the factor of individual differences in task
performance under nolse exposure conditions, a pasper and pencil test for assess-
ing individual sensitivity to the annoyance properties of noise (Bregman and
Pearson, 1972) was used in the present study. The factor of individu;l differences
and subjective annoyance response has practical importance. For example, screening
people on the basis of necise annoyance sensitivity has sapplications in personnel
selection in industry, government, and transportation jobs where some environments
may be characterized by continuous or intermittent intense acoustic nolse.

Tn summary, the prediections of the present study were that significantly
increased errors in performance at & basically mental task requiring considerable
chennel capacity would be exhibited under conditions of working at the task in

noise at 93 dB(A) intensity as compared with working at the task in quiet. Further-

more, such decrements should be significantly differentiated with respect to the
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type of noise pattern to which the subject is éxﬁosedl Differential decremental
effects of noise on perfqrmancé‘should also be accompanied by differential physiolog-
ical activetion effects, simultaneously, for different patterns of nqise. Finally,
high noise annoyance sensitive subjects showld show greater performance decrements
and higher physiclogical activation levels than low noise annoyénce sengitive

subjects under exposure to nolse,

Method

Subjects. Sixteen undergraduate university students (1L male, 2 female)
drawn from a general psychology course served as sﬁbjects. Each subject was
screened for hearing loss and visual acuity deficits; all were right handed. In

recruiting the subjects no reference was made 1o the topic of noise sensitivity.

Task Apparatus. The apparatus used in Study 2 and depicted in Figure 3

was used with certain modifications in task programming. . The principal difference
involved a requirement for short-term memory,

When a four—digit code and its accompanying gfeen light were presented,
the subject also had to memorize.it in addition to making a response;’ Several
more trials were then presented in which only the stimulus light came on.
Responses to these trials were made from membry of the four-digit code from the
first trial. Afte; several trials_wére presented without the code being dis-
played, & new code appeared, and the c&cle was pepeated. The number of trials
for which no code was presented varied randomly from twd to fivé, inclusive,
following each code presentation. ‘Additiogallf, tge érdér of presentaticon of the
four green indicator (stimulus) iights aﬁd of_the dxks wgs randomizeq. Trial
presentations were programmed in sets of 48 which‘included a code
presentation on only 11 of the trials in a randomized seéﬁence.- Thus , remember—

ing the code was required on all of the rémaining 37 trials for a correct response
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to be made by the subject. The subject had two seconds in which to make &
response. The task was externally paced with a trial interval of two seconds
and an intertrial interval of one second.

For purposes of the experiment the task display panel was located within

a double-walled sound-proofl chamber.

Auditory Stimulus Apparatus. Three types of audio stimuli were used:

continmious broadband noise, intermittent regular or periocdic noise, and inter-
mittent irregular or aperiodie noise. The source for the audioc stimuli consisted
of 20 to 20,000 Hz--linear response--random noise generated by & Bruel and Kjaer
type 1Lk02 random noise generatcer. The audio stimalus was presented to the
sublect by means of a Telex type 1200-k2 headset which also contained a
microphone for 2-way communications during the experiment. By coupling the

noise generator output to a logic network an intermittent regular or periodic
noise stimlus was obtained. The network was adjusted for a 2.0-second on~period
and a 2.0-second off-period. The third stimulus which consisted of an irregular
intermittent or aperiodic noise was produced by coupling the continuous ocutput |
of the random noise generator through an electromechanical timing cir;uit. The
noise stimulus produced was characterized by on-periods of two seconds and off-
periods that averaged 1.8 seconds. The following restricted randomization order
corresponds to the presentation of the stimulus of f~periods in seconds: 1.0,
3.0, 0.5, 1.0, 2.5, 2.0, 3.5, and 0.5. Considerable effort was made to ensure
that the average length of the off-periods was as close as passible to the
average length of the on-periods for the intermittent aperiodic stimalus as well
as the intermittent periodic stimulus. Deteils of the logic network and timing

circuitry appear in Conrad, 1972.
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The continuocus and intermittent outputs of random noise were adjusted to a
level of 93 dB(A), at the headphones, by means of a Bruel and Kjaer type 4153
artificial ear in connection with a Bruel and Kjaer type 2603 microphone
amplifier. The average socund level obtaining in the ambient or no-stimulus

condition was found to be 38.8 4B(A).

Physiclogical Recording Fquipment. Three physiological measures were

recorded simultaneously with performance data recording. An electromyogram was
~obtained from the flexor carpi radialus and flexor digitorum sublimus muscle
groups of the left forearm. 1In addition, photoplethysmogfaphié blood volume
pulse amplitude and rate were obtained from the middle finger of the left hand.
Continuous records throughout each experimental session were obtained using a
Grass Tnstruments Model 7 polygraph. The electromyogram recording electrodes
were coupled to a TP3 Grass Instruments physiological recording preamplifier
which was adjusted to function as a continuous voltage-time integrator. The
integrator circuit of the T7P3 preamplifier, in conjunction with the Model T chart
drive assembly and driver amplifier, was used to display a unidirecti?nal pen
deflectioniwhich was proporticnal to the average level of the ongoing electro-
myogram signal, The amplitude of the tracing was a function of the amount of
ongoing biocelectric activity at any given time.

Digital photoplethysmographic blood volume pulse amplitude was obtained
from a transducer unit {(Figure 10) designed by Conrad, 19T72. A small reétangular
aluminum box containing a Clairex CLTOML photoconductive cell and two 4.5 v
flashlight bulbs was construcfed from 2 mm thick aluminum sheets and was secured
by miniature nuts and bolts. The enclosure measured 6.9 cm long x 1.7 cm wide
x 1.7 cm high and contained two holes that were 4% mm in diameter straddling a 4

single 9 mm hole located in the center,. The two 4 mm holes served as ports for
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Figure 10. Photoplethysmographic transducer unit attached to finger.
(subject's hand is shown palm facing upward for clarity;
during actual recording trials, the hand and arm were
inverted from the position shown)
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the two light bulbs, while the cepter hole functioned as a window for the photo-
conductive cell, The centeflholé was &lso coveredlwith a llcm gquare piece

of Wratten No., 89B gelatin filter neterial whiéh served as an ihfrared filter
screening most visible light rays from th; photoconductive cell. The surface
containing the ports was covered with a &elluioid sheet and the remainder of

the unit was taped for protection. The transducer was operated in conjunction
with a contrel unit alsc constructed by thelexperimenter. The circuit used

was one described by Brown (1967, p. 67) in which a full bridge arrangement

vas used for obtaining the recording output from the photoconductive cell.

The diggtal rhotoplethysmograph transducer described overcomes two princi-
pal disadvantages of commercially available units. First, some commercial
units tend to be bulky and heavy. 1In contrast,-the present unit is small
enough to be held in place with s.. strip of masking tape and weighs only a .few
cunces. Secondly, the heat from the higher voltage bulbs irn some units
irritates subjects and can produce recording artifacts. The low voltage bulbs
used in the present circuit, however, have negligible heat output. ’

for recording of the blocd volume pulselamplitude, the output of the
photoconductive cell bridge circuit was fed directly to a Grass Instruments
TP3 preamplifier functioning as a wide—band AC preamplifier. The resultant
continuous primary recording of therbasic blood volume pulse waveform was -
obtained by means of fhe Model T,polygréph.ch&rt drive assembly.

Grounding of the iﬁstrumentation,‘room, and subject is deseribed in detail

in Conrad, 1972.
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Test Materials. All subjects were ranked from highest to lowest according

o0 their scores on a8 noise annoyance sensitivity questionnaire. The ranked
subjects were then divided at the median into two blocks; the upper block was
identified as high noise annoyance sensitive and the lower block was labelled
low noise annoyance sensitive.

The guestionnaire was composed of a subset of Tk items originally used
in the developmeﬁt of a predictive model for noise annoysnce sensitivity in

adult subjects (Bregman and Pearson, 1972). Prior to conduct of the present

study the Bregman-Pearson scale was administered to a sample of 35 introductory

psychology students who later rated the annoyance value of six sounds pre-
sented in the simulated 1living room environment.. A subset of 15 highest
predictor items was chosen, using statistical multiple regression techniques,
in addition to appropriate item regression weights. Then, in the present
study, each subject was given & test booklet containing items numbered 10
through 74 of the original T4 test items, but only the 15 highest predictor
items chosen for psychology students were used in calculating an indiyidusl's

test score.

Procedure. Following audicmetric screening each test subject was taken
into the chamber and indoctrinated by the experimenter on task procedures.
The subject was then given an initial 25 to 30 practice trials with feedback
concerning progress. The experimenter then monitored a longer practice

gession of asbout five minutes with the chamber door e¢losed. Performance
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accuracy was checked at regular intervals-<every 25 triasls--until a criterion
level of at least 50 perEgnt correct respinses was attained:; this was followed
DY a performance stabilization period of 150 trials.

Following the training period, instructions for responding to thernoise
annoyance sensitivity questionnaire were given by the experimenter while the
subject read along simultaneously. Uﬁon completion of the questionnaire
(which required approximately 15 minutes} the test materials were collected
and instructions for the four experimental sessions were read aloud by the
experimenter. A briefing on physioclogical recording procedures was also
read. The subject was then allowed to relax cutside the chamber wntil
preparations for physiological recording were completed, Next, the subject
was reseated in the chamber and, as depicted in Figure 10, two recording
eiectrodes were attached tc the left forearm in a standardized lead configura-
tion (Venables and Martin, 1967, Ch. 8) for continuous passive recording
of muscle activity from the flexor éarpi radialus and flexor digitorum sublimus
muscle groups. Passive recording was chosen in order to minimize task
involvement of the muscle groups under consideration. The photoplethy;mn—
graphic transducer was then attached (Figure 10) to the dorsal surface of the
middle finger phalanx of the left hand (Brown, 1967, Ch. 2; Venables and
Martin, 1967, Ch. 6) using a 5-inch strip of l=inch masking tape. The left
arm holding the entire preparation wes then positioned comfortably immediately
to the left of the response keys; a strip of masking tépe was lightly applied

over the wrist and onto the task keyboard panel as a reference point for
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the subject. A grounded earclip necessary for the electromyogram was then
attached to the subject's right ear lobe. The headphone seat was positicned as
comfortably as possible and over the ear lobe ¢lip. Intercommunications were
then tested and the chamber door closed. During the ensuing 10-minute rest
period, physiological baselines were established and sensitivity calibrations
were performed.

The investigator then announch the start of session number one. The
experimental conditions were presented in a restricted randomization counter-

balanced order according to the following schedule:

Subject Sequence Key
51 QCPaA Q work in quiet
2 APCAQ C work in continuous noise
83 CQAP P work in periodic noise
sb FPAQC A work in aperiodic noise
SN Repeat

At the conclusion of session number one, the experimenter announced that the
subject should rest but cautioned against disturbance of the recording prepars-
tions. Fach of the four experimental conditions was conducted in the same
manner and consisted of 105 to 115% trials for a duration of five minutes aach.
During three intervening subject rest bresks of ten minutes esch, the experi-
menter had time to rebalance the bridge circuit of the photoplethysmogreph, to
recheck recording baseline positions, and to prepare the next sequence of
experimental conditions. The rest periods also served the important function

of allowing time for physiological response recovery, and for rebounding from
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previous stimuli to subside, prior to restimulation in order to aveid confound-
ing of responses with each other (Sternbach, 1966, p. T8)..
Digital counters registered the total number of trials presented, the

total number of trials attempted, and the total number of correct responses.

Results5

Performance Data. The number of errors committed within each experimental

condition lasting for five minutes each was first converted to a percentage
seore by dividing by the total number of trials presented during the given
experimental condition. A similar error score was also calculated for each
subject's 150-trisl training baseline. A given subject's basaeline error score
was then subtractéd from each of his experimental condition error scores. This
procedure was followed in ordér to subtract out the factor of individual ability
differences. The resuitant difference scores were then entered as the dsts
points in a two~factof analysis of variance with repeated measures on one factor
(Winer, 1962, p. 302)}. The same statistical procedure was also utilized for the
statisfical analysis of blood volume pulse‘amplitude, pulse rate, and-tlectro—
nyogram.

Based on a test for non-normality of the mean error dﬁta (discussed in
Conrad, 1972) it was decided that an arc sin transformation should be performed

prior to statistical analysis. Results of the analysis of variance appeay in

5Due to difficulties encountered in physidlogicdl date recording not all subjects
could be included in the separate analyses, A subset of 10 subjects was used in
the digital vasoconstriction response asnalysis, and 12 subjects were included in
the pulse rate and forearm muscle activity eanalyses. Despite this variation in
sample size for the respective dependent variables, no other data observations
had to be omitted; all samples were of equal size within any given dependent
variable's factorial analysis. In addition, all subjects were treated under
identical experimental conditions.
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Taehle VI, while Table VII lists the means for levels of the two prinecipal
independent variables of interest and for their interaction (cells). The noise

condition factor was not statistically significant (Table VI),

TARBLE VI. ANALYSIS OF VARTANCE {FERROR SCORES)

Source ar 8s MS F (df)
Noise Annoyance 1 234.13 234,13 1.53 (1, 1b)
Sensitivity

Sublects Within

Noise Anncyance 1Y 2144 .83 153.20 -
Sensitivity
Noise Condition 3 2h.17 8.06 0.35 (3, 42)

Noise Anncyance
Sensitivity x 3 113.77 37.92 1.64 (3, 42)
Noise Condition

Subjects x Noise
Condition Within Lo 969 .26 23.08 -
Noise Annoyance
Sensitivity

-.l
the mean error scores (Table VII) under continuous, periodic, and aperiocdic noise
belng only slightly different from that in guiet.
Although the mean error score for high sensitive subjects was higher than
that for low sensitive subjects (Tablg VII), the analysis of variance (Table VI)
indicates that this effect falls short of being statistically significant.

Finally, from Table VI, no significant interacticn effects are to be noted,
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TABLE VII. MEAN ERROR SCORES AS A FUNCTION OF NOISE CONDITION AND
SUBJECTIVE NOISE ANNOYANCE SENSITIVITY

MEAN EFRRCR SCORES

Neise Annoyance Noise Condition

Sensitivity Quiet Continuocus Periodic Aperiodic Mean
High -7. 4k -8.88 -h.97 ~7.62 ~7.23
Low -1ik.09 -13.19 -1h4.98 -12.93 -13.80
Mean ~10.77 -11.03 -9.98 -10.28

Questionnaire Response Data. Kendall tau correlation coefficients and
significance tests between the noise annoyance sensitivity scores and cbserved
.dependent variable responses appear in Table VIII. Significant correlations were
TABLE VIII. KENDALL TAU CORRELATION COEFFICIENTS FOR SUBJECTIVE

NOTSE ANNOYANCE SENSTTIVITY AND DEPENDENT VARTABLES

NOISE CONDITION

CONTINUOUS PERIODIC APERIODIC
_ Error Scores
+0.05 +0.25 +0.18
(N. 8.) (N, 5.) _ (N. 8.)

Blood Volume Pulse

+0.56% +0. b7 +0.51%

(p < .02) - {p < .0k) (p < .03)
EMG

~0.09 : +0.06 .. -0.06

(N. 8.) (N. 58.) (N. 8.)

Pulse Rate

+0, ho¥ +0.27 +0.30
{p < .0k) ~(w.s8.) (n. 8.)

found under all three noise conditions for the blocd volume pulse variable, and

for pulse rate only under continuous noise.
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Vasoconstrietion Response. Blood volume pulse amplitude was measured in

millimeters directly from the record. The nmeasured vertical distance between a
given systolic peak and the immediately preceding diastolic trough gave a relative
indication of digital pulse pressure. Six of these wavefornms vwere measured con-
secutively at intervals located 30 seconds apart throughout a given S5-minute
exposure condition. All of the individual measuremen£s were then averaged and
the mean amplitude was afterwards multiplied by the calculated recording sensi-
tivity level. .The result was a mean voltage density function in millivolts

that was directly proportional to pulse pressure (the measﬁred distance between
systolic peak and diastolic trough). Vasoconstriction, in turn, was inversely
proportional to the pulse pressure or blood volume pulse amplitude (Brown, 1967).
No data were analyzed during the first two minutes of any experimental condition
in order to allow physiclogical response recovery and stabilization to occur.
This procedure was used for all of the measured physiclogical variasbles. The
mean blood volume pulse amplitude, in millivoits, obtained for a given subject's
resting baseline was then subtracted from his mean blood volume pulse.amplitude
under each experimental condition. The resulting change scores or diéectional
shifts from resting baseline then served as the data points for the statistical
analysis.

As shown in Table IX, digital vasoconstriction response was higher under
the three noise conditions than under the quiet condition. A separate analysis
of variancc here revealed this effect to be statistically significant beyond the
.03 level (g;} Conrad, 1972). Increased vasoconstriction is represented by
large negative shifts from the resting baseline. A Newman-Keuls test for repeated
measures designs (Winer, 1962, p. 309) was performed on the treatment means.

The results showed that the mean shifts were significantly different between
continuous noise and quiet, pericdic noise and quiet, and apericdic noise and

guiet. Results were significant beyond the .03 level of significance.
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kg

VOLUME PULSE RESPONSE, PULSE RATE, AND FOREARM
FLECTROMYOGRAM AS A FUNCTION OF NOISE CONDITION
AND NOISE ANNOYANCE SENSITIVITY

PHYSTOLOGY DATA MEANS

Volume PulselResponseanillivolts

Neoise Annoyance

Noise Conditiocon

Sensitivity QUTET ° CONTINUGUS PERIODIC  APERTODIC | Mean
HIGH -16.22 -21.82 -23,52 ~2Lh.01 [-21.39
LOwW 1,67 2,72 -0.98 -1.01 -0.76
Mean -7.27 ~12.27 -12,25 -12.51

Pulse Rate--Beats Per Minute

Noise Annoyance

Noise Condition

Sensitivity QUIET CONTINUOUS PFRIODIC  APERIODIC | Mean
HIGH 7.03 B.01 4,67 7.89 6.90
LOW 6.49 2.62 k,36 6£.10 k.89
Mean 6.76 5.31 4,51 6.99

Forearm Electromyogram--Microvolts

Noise Annoyance

Noise Condition

Sensitivity QUIET  CONTINUOUS  PERIODIC _ APERIODIC | Mean
HIGH -, 32 S -1.11 -0.36 0.58 -1.30
LOW ~L .67 -4.21 =28 -3.8k -3.88
Mean L.k _2.66 . -1.58 -1.63




50

Vasoconstriction response for high noise annoyance sensitive subJjects
(-21.3G) was found to be higher than that of the low noise anncyance sensitive
subjects (-0.76) as alsc shown in Table IX. This difference was statistically
significant beyond the .01 level of significance as revealed by enslysis of
variance (Conrad, 1972); no significant interaction effect between noise

gsensitivity and noise condition was noted here, however.

Pulse Rate Data. Pulse rate was sampled at 30-second intervals to

coincide with the sampling epochs for blood volume pulse and electromyogram.
The rate was estimated at these points by counting the number of pulse waveforns
in a 10-second period and multiplying the result by six. This procedure yielded
estimated beats per minute at the chosen time pericd. The criterion for
rejection of any given waveform which occurred only partially in a given sampling
pericd was the omission of 50 percent or greater of the pulse wave from the
sample. The mean pulse rate was then calculated for each experimental condition
and for the resting baseline. The baseline mean rate was then subtracted from
each experimental conditicn mean rate to obtain the change scores or directionsal
)
shifts from resting baseline. These served as the data points for statistical
treatment.

It was found that high noise ennoyance sensitives had slightly higher nean
rate shifts (6.90) than low noise annoyance sensitives (4.89) as shown in Table
IX; in addition, some slight differences were shown across noise treatment condi-
tions. However, none of these differences were statistically significant, nor

were there any significant interaction effects (Analysis of variance summarized

in Conrad, 1972).
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Forearm Electromycgram. In érder to calculate the average level of ongoiﬁg
bioelectrical activity for cne experimental pefiod of\five minutes, s sampling
procedﬁre was devised that would render a reasonably accurate estimate and also
be as free as possible from subjective bias. Sampling points were chosen every
30 seconds on the record to coincide with the sampling points of 5100& volume
pulse amplitude and pulse rate egtimation with regpect to time. Each éampling
point chosen in this mannef comp%isad a two-second epoch of the integrated trace
within which the amplitude of the trace was measured at the peak of every
prominent upward excursion and the trough of every prominent downward excursion
of the trace. "Prominent'" meant that the slope of the trace at a given peak or
trough underwent a change in direction in excess of 90 ggérees. Where the
record appeared to be relatively flat and to contain few if any prominent pesaks,
the amplitude was meagured at 0.5 second intervals. All measurements were made
reiative to a preestablished recording baseline pen deflection. The measurements,
in millimeters, were then averaged under each experimental condition and converted
to microvolts by multiplying the mean amplitude by the recording sens;tivity
level. Next, the calculated mean muscle activity level for the resti;g baseline
condition was subtracted from each of the experimental condition mean activity
jevels. The resulting shift scores were then statistically analyzed.

In the results, Table IX, large negative shifts from resting baseline
indicate less activation under stimulus conditions. While it is noted that average
muscle activity was slightly higher in noise than in quiet, and also higher for
high sensitive subjecfs than for low sensitive subjects, an analysis of variance

(Conrad, 1972) indicates thaﬁ none of these differences are statistically signifi-

cant. There were alsc no significant interaction effects,
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Discussion

The results of this atudy are in line with other studies that indicate
Iittle if any decremental effects of nolse on performance for tasks that involve
primarily mental activity or thinking such as arithmetic or problem solving.

The results of the present study indicate that performance at a rapid serial
decoding task involving a short~term memory component will not be significantly
affected by continuoﬁs or periodic and aperiodic intermittent patterns of
broadband noise presented at a level of 93 dAB(A)}. This is the case, at least,
for the task parameters chosen in this study.

Such continued good performance was, however, accompanied by & somewhat
increased intensity of effort in the form of a significant inerease in cutaneous
vagoconstriction response. Furthermore, the increased cost of maintairing a
high performance level was significantly higher for persons who were highly
annoyed by ncise than for persons who were less annoyed by noise. In addition,

a significant relationship was found between noise snnoyance sensitivity and
blood volume pulse (BVP) response for continuous, periodie,and aperiocdic noise
conditions, ’

To the extent that the intensity with which work is performed is linked with
physiological activation, increased activation can be said to reflect an increase
in intensity of effort or cost of work. The extent of this interrelationship
varies in different studies but appears to be clear enough to indicate a genuine
connection. In a study by ﬁyan, Cottrell and Bitterman (1950) it was found that
subjects who mzintained their normsl levels of performance under conditions of
noise and glare showed a greeter increase in muscle tension than subjects whose
performance was impaired. Pinneo (1961) has shown that externally induced muscle
tension resulted in widely generalized physiological activation as indicated by

significant increases in palmar conductance, muscle potentials, respiration rate,
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heart rate, and EEG acfivity. Simultaneocusly, performance at an auditory track-
ing task (involving right foot pedal conformance to a function generated signal)
‘was gignificantly impaired.‘ In his review of the effects of exposure to high
intensity noise, Davies (1968) concluded ﬁhat when subjects who are engaged in
the performance of a cognitive task are simultaneously exposed to 100 4B of
broadband noise there is sufficient evidence that the noise adds "slightly but
significantly” to the cost of mental work as indicated by physiclogical measures
of skin conductance, muscle tension, and pulse interwval.

Beyond increased cost of work (as evidenced by significantly higher vaso-
c0nétriction under noise) the results of the present study might have a basis
in an arousal hypothesis explanation of noise effects on performance if activation
was actually at an optimal level. Reference to Tables VII and IX reveals that
the sample means for high annoyance sensitive subjects are displaced in a direction
intuitively predicted by an arousal hypothesis; i.e., high annoyance sensitives
show greater EMG activation, greater BVP activation, higher pulse rate, and
inecreased error scores. However, only BVP activation was statistically signifi-
cant. The level used in this study (93 dB{A)) has, however, been ide;rt‘ified in
some studies as the approximate level below which noise effects on performance
were not cobserved. It may be that for higher levels of intensity than those used
in the present study =il four dependent variables would be significantly increased.
Such a result might be observed for intensity levels of between 95 and 110 4B(A).

In addition, the factor of task parameters is of critical importance.
Freeman (1938) has suggested that the optimal degree of muécle tension that
defines the transition point between improvement and impairment of performance
becomes lower as taék difficulty is increased. Ray (1965) has also shown that
inereased pressure for épeed leads to ﬁrogressively poorer performance in solving

relatively difficult problems. It has also.been argued that level of arousal
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rises with strength of incentive and that the tagk itself induces a degree of
arousal which increases with its difficulty. Morgover5 the tagk~induced aroussl
is added to that arousal produced by the incentive (Welford, 1968, p: 271). The
task in the present study used trial intervals of two seconds combined with a
l-second intertrial interval. An increase in speed stress (as in the case of
Study 2) could also increase the probability of a significant increase in errors
under noise-~especially for a higher intensity level of noise. Tn any event, it
has been demonstrated in the present study that a subjective measure of noise
annoyance sensitivity might be used to predict subjects' autonomic responses
under exposure to intense auditory stimulation.

A basic question in psychophysiology--the extent to which individuals differ
in their rhysiological functioging-—unites the traditionai interest of the
psychologist in individual differences with the interest of the physiologist in
normal functioning. However, few prhysiological referents for psychological
concepts are known in detail. Only sensation and, to a more limited extent,
emotion and anxiety are known ta have specific physiclogical referents. Hence,
the issue of physiclogical differentiation of Psychological concepts ﬁy
peripherally available measures is not a settled issue. To the investigators'
knowledge, the results of the present study showing & significant relationship
between subjective noise annoyance sensitivity and a measured sutonomic variable

{digital photoplethysmographic response) have not been previously reported.

V. SUMMARY AND CONCLUSIONS

1. Three studies of noise effects upon human information processing have been
described. The individual studies involved both different types of noise
exposures and different tasgk characteristics, and thus, perhaps not

surprisingly, results (noise effects on performance) varied.
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b)
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In the first study 80 dB noise (speech played in reverse) was
rresented at the task only in connection with the onset of a visual
gignal requiring a response. As compared to quiet, auditory stim-
lation was found to speed up the processing of signals. This
facllitation was attributed to increased arousal. The‘findings
guestion Broadbent's position that arcusal can be augmented only
when the '"neural filter" selects noise stimuli at which time
response to task information is not possible. It would appear

that ncise is not completely rejected by the nervous system when
man is processing information. Task difficulty (signal complexity)

was alsc varied in the study, and contrary to expectations, fastest

_processing cccurred for the most complex signal; additionally,

there was no significant interaction between signal complexity
and noise. Finally it was concluded that the facilitative effect
of noise in this study ocecurs not at the level of attentional
processes but at a more central level.

Speed stress {work pace) was a variable in tpe's§p0nd study.a
Auditory stimulation consisted of'i&b&dﬁ‘ihterAiﬁtent pulses of
constant duration, broadband 100 dB(A) A;isé‘éebaraté& by rapid,
variable internoise intervals. Cogpinuous attéhtion to the task
for a perlod of one hour was requiredABf subjects. It was found

that noise adversely affected performance on the task; the faster

‘the work pace, the poorer was performance; noise more adversely

affected performance at fast work paces than at slower work paces;"
and performance in noise at fast work paces deteriorated dis-
proportionately with time at work. TIn short, effects were not

transient, performance under noise never adapting to levels attained
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in quiet. The results emphasize the difficulty of adapting to
loud, unpredictable noise even when people are motivated and
trained for the task; further, noise can facilitate the onset of work
decrement when the task involves a fast work pace and is continued
over time without desirable rest periods. The performance effect
of noise observed in this study involved correct responses, or
accuracy, rather than speed of response; this should be noted by
those who are concerned with the error-free, or safe, behavior of
employees. Finally, subjective complaints of subjeets in this
study pose implications concerning the health and well-being of
workers exposed to combinations of noise and speed stress.
¢) The third study used the same basic apparatus as the second,
adding a short-term memory component and.eliminating.the épeed
stress emphasis. While a variety of noise'stimuli were used
(continucus, periodic, aperiodic--all at 93 aB(4)) no significant
performence effects were obtained. However, performance under
noise was accompanied by inereased effort as reflected by cuéaneous
vasoconstriction; further this "cost" was higher for subjects
classed as "high noise sensitive" in contrast to those classed as
"low-sensitive." ®inally, a significant relationship between noise
annoyance sensitivity test scores and blood volume pulse responses
under the three noise corditions was found.
The effects of noise on performance are difficult to predict. It is clear
from these studies and similar ones that the occurrence of noise effects on
human performence is dependent upon a number of factors, often involving

thelr interaction; these factors ineclude: (a) noise intensity;
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{b) "type" of noise—-both in terms of spectral and of "impulse"
characteristics; (c) temporal chafacteriétics of noise, e.g., continuous,
periodic, or aperiocdic; (d) time correlation (phasing) between noise
stimilation and task signal presentations; (e) fﬁe nature of the task in
terms of signal complexity (load stress) or speed stress; (f) the nature
of human abilities involved in the task, e.g., attentional, cognitive;
(g) the level of arcusal and of motivation of the subject; and (h} the
sensitivity of the subject to noise as refliected in his attitudes and
personality structure.

The results of all three studies were interpretable in terms of arousal
theory; this encourages use of this theoretical positicn in prediction of
noise effects on task performance. For example, one might predict that

potential modifiers of arcusal other than those in these studies {e.g.,

drugs, other environmental stressors) would interact with noise and/or task

stress to affect performance.

It ié felt that the findings support the view that the concepts of speed
stress and load stress involve useful dimensions which can be reléted to
whether a task situation 1s susceptible, or not, to adverse performance

effects from noise exposure.
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